-	_	_
	\mathbf{E}	7/
H	п,	74

-	3.7	-
Page	<i>No</i>	1

			 	·—	-			
USN								
ODI.	1	i l	1		ł	1	i	Ì

NEW SCHEME

Seventh Semester B.E. Degree Examination, May 2007

Electrical and Electronics Engineering

High Voltage Engineering

Time: 3 hrs.] [Max. Marks:100

Note: Answer any FIVE full questions.

- a. List the advantages of HVDC bulk power transmission over HVAC bulk power transmission. (04 Marks)
 - b. Discuss the need of generating high voltages in a laboratory. (03 Marks)
 - c. Mention the important applications of high voltage. (05 Marks)
 - d. Write the preferred properties of a gaseous dielectric for high voltage applications.

 Give any four examples of gaseous dielectric. (08 Marks)
- 2 a. Write about CORONA discharges in non-uniform fields. (10 Marks)
 - b. Briefly write about Paschen's law. (05 Marks)
 - c. Explain the time lags for breakdown with a diagram for step function voltage pulse.
 (05 Marks)
- 3 a. Explain the suspended particle theory of breakdown in commercial liquids. (05 Marks)
 - Explain the 3 stage cascade connection of transformers for generation of HVAC with a schematic diagram. (15 Marks)
- a. Describe the Tesla coil with its equivalent circuit and output waveform. Give the application of the Tesla coil. Show that $V_2 = V_1 \sqrt{\frac{C_1}{C_2} \eta}$ with usual notations.

(10 Marks)

- b. A ten stage Cockraft-Watton generator circuit has all capacitors of $0.06~\mu F$. The secondary voltage of the supply transformer is 100~kV peak at a frequency of 150~Hz. If the load current is 1~mA, determine
 - i) Voltage regulation
 - ii) Percentage ripple
 - iii) The optimum number of stages for maximum output voltage
 - iv) Maximum output voltage.

(10 Marks)

- 5 a. Draw the lightning impulse voltage and both the components in the same graph of $V = V_{\theta} \left(e^{-\alpha t} e^{-\beta t} \right)$ and comment on α and β . (05 Marks)
 - b. Draw the exact equivalent circuit of an impulse generator, single stage. (03 Marks)
 - c. Discuss the components of a multistage impulse generator of less than 1 MV.

(12 Marks)

- a. Mention the advantages and limitations of generating voltmeter. (06 Marks)
 b. Explain the series resistance microammeter used in HVDC measurement. Write the limitations of the method (10 Marks)
 - Limitations of the method. (10 Marks)
 c. A generating voltmeter has to be designed so that it can have a range from 20 kV to 200 kV dc. If the indicating meter reads a minimum current of 2 μA and maximum current of 25 μA, what should be the capacitance of the generating voltmeter be? The driving motor has a synchronous speed of 1500 rpm. (04 Marks)
- 7 a. Discuss the various factors that affect the spark over voltage of a sphere gap.

(12 Marks)

b. Discuss the dry and wet flashover tests on an insulator.

(08 Marks)

- 8 a. Obtain an expression for the dielectric power loss 'P' interms of voltage 'V' capacitance 'C', frequency f and loss angle 'S'. (04 Marks)
 - b. A 20 kV, 50 Hz schering bridge has a standard capacitance of 106 μ F. In a test on a bakelite sheet, balance was obtained with a capacitance of 0.35 μ F in parallel with a non-inductive resistance of 318 Ω , the non-inductive resistance in the remaining arm of the bridge being 130 Ω . Determine the equivalent
 - i) Series resistance and capacitance and the power factor of the test specimen.
 - ii) Parallel resistance and capacitance and the power factor of test specimen.
 (12 Marks)
 - c. Draw the basic circuit for measuring narrow band partial discharge.

(04 Marks)
